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1. Introduction
In the past few years, computation of definite integrals to high precision has emerged

as a very useful tool in experimental mathematics. In particular, it is often possible to
recognize an otherwise unknown definite integral in analytic terms, provided its numerical
value can be calculated to high accuracy. As a single example, recently the author,
together with Jonathan Borwein and Richard Crandall, were able to evaluate the integrals
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for n as large as 1024, to 1000-digit precision. This was done by first transforming them
into the 1-D integrals
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where K0(t) denotes the modified Bessel function, and then applying the tanh-sinh quadra-
ture scheme. One can show that C1 = 2, C2 = 1, C3 = L−3(2) =

∑
n≥0[1/(3n+1)2−1/(3n+

2)2], and the numerical values agree with these. Using the high-precision value of C4, it was
then conjectured that C4 = 7ζ(3)/12. We also discovered that limn→∞ Cn = 2e−2γ, where
γ is Euler’s constant. These experimental discoveries have subsequently been proven [3].

The tanh-sinh quadrature scheme is the fastest currently known high-precision quadra-
ture scheme, particularly when one counts the time for computing abscissas and weights
[4]. It has been successfully employed for quadrature calculations up to 20,000-digit pre-
cision [2]. It works well for functions with blow-up singularities or infinite derivatives at
endpoints [4], and it is well-suited for highly parallel implementation [2]. Rigorous error
bounds can be easily computed [1]. It was first introduced by Takahasi and Mori [5].

2. The Basic Tanh-Sinh Quadrature Scheme
The tanh-sinh quadrature scheme is based on the Euler-Maclaurin summation formula,

which implies that for certain bell-shaped integrands, approximating the integral by a
simple step-function summation is remarkably accurate. This principle is utilized in the
tanh-sinh scheme by transforming the integral of f(x) on the interval [−1, 1] to an integral
on (−∞,∞) using the change of variable x = g(t), where g(t) = tanh(π/2 · sinh t). Note
that g(x) has the property that g(x) → 1 as x → ∞ and g(x) → −1 as x → −∞, and
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all derivatives rapidly approach zero for large positive and negative arguments. Thus one
can write, for h > 0,∫ 1

−1
f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt ≈ h

N∑
j=−N

wjf(xj), (1)

where xj = g(hj) and wj = g′(hj), and where N is chosen large enough that |wjf(xj)| < ε
for |j| > N . Here ε = 10−p, where p is the numeric precision level in digits. Because
g′(t) and higher derivatives tend to zero very rapidly for large t, the resulting integrand
f(g(t))g′(t) typically is a smooth bell-shaped function for which the Euler-Maclaurin
formula applies, even in cases where f(x) has an infinite derivative or a blow-up singularity
at one or both endpoints. As a result, the approximation in (1) is often very accurate.

Formula (1) is the gist of the tanh-sinh scheme. Note that the abscissas xj and the
weights wj can be computed once for a given h, and then used for numerous problems.
Typically one selects h = 2−m, for some m. The author has found that m = 12 is more
than sufficient to evaluate most integrals to 1000-digit accuracy. One typically proceeds
one “level” at a time, where level k uses h = 2−k, starting with level one and continuing
until either a fully accurate result has been obtained (see Section 4) or the final (m-th)
level has been completed.

In a straightforward implementation, with p-digit arithmetic, abscissa-weight pairs are
computed with relative precision p digits and, for a given h, are generated for j ≥ 0 until
wj < 10−p. Note that x−j = −xj and w−j = wj, so xj and wj do not need to be computed
for j < 0. Also note that once the array of abscissas and weights has been calculated for
h = 2−m, then the abscissas and weights for any level k ≤ m may be found by simply
skipping through this array with a stride of 2m−k. Also note that the integrand function
needs to be evaluated only at the odd-indexed abscissas at each level (after the first level),
since the sum of the function-weight products at the even-indexed abscissas has already
been computed—this is merely the quadrature result from the previous level. In this way,
considerable run time can be saved.

3. Enhancements to the Basic Scheme
In a more sophisticated implementation, one can calculate additional abscissa-weight

pairs, for a given h and precision level p, continuing until wj < 10−np for some n ≥ 2
(the author normally uses n = 2). Also, it is better to store yj = 1 − xj instead of xj,
since xj are very close to one for large j. The yj can be computed more accurately as
yj = 1/(eπ/2·sinh hj cosh(π/2 · sinh hj)). Then during a quadrature calculation, one uses
np-digit precision to calculate the abscissas xj as xj = 1 − yj. Also, in cases where
the integration interval is [a, b], instead of [−1, 1], one must linearly scale the argument
to [−1, 1] using np-digit arithmetic. With these changes, the argument values for an
expression such as 1 − t appearing in an integrand such as

∫ 1
0 et(1 − t)−1/2 dt (which has

a blow-up singularity at t = 1) are more accurate. The function itself does not need to
be computed using this higher precision, so the added computational cost of this np-digit
precision scaling procedure is negligible. These modifications permit one to obtain full
p-digit precision in most cases where the function is badly behaved at the endpoints.
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4. Error Estimation
A highly accurate estimate of the error in tanh-sinh quadrature is given by

Ê(h) = h
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h
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)2 N∑
j=−N

F ′′(jh),

where F (t) = f(g(t))g′(t) and g(t) = tanh(π/2 · sinh t) [1]. In less formal usage, one
can employ the following heuristic error estimation scheme, which is inspired by the
quadratically convergent behavior often achieved by the tanh-sinh scheme. Let Sk be the
computed approximation of the integral for level k. Then the estimated error at level n
is one if n ≤ 2, zero if Sn = Sn−1, and otherwise 10d, where d = max(d2

1/d2, 2d1, d3, d4)
(except d is not set greater than 0). In this formula, d1 = log10 |Sn−Sn−1|, d2 = log10 |Sn−
Sn−2|, d3 = log10(ε · maxj |wjf(xj)|), and d4 = log10 max(|wlf(xl)|, |wrf(xr)|. Here xl is
the closest abscissa to the left endpoint, xr is the closest abscissa to the right endpoint,
and ε = 10−p. Calculations of d may be done to ordinary double precision accuracy (i.e.,
15 digits), and the resulting value may be rounded to the nearest integer. One does not
need to rely on this estimation scheme if one is willing to continue computation until
the quadrature results from two successive levels are in agreement (to within the last few
digits).

Some additional details are given in [4]. Sample implementations in Fortran-90 and
C++ are available at http://crd.lbl.gov/~dhbailey/mpdist.
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